Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.308
Filtrar
1.
Front Immunol ; 15: 1353556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571943

RESUMO

Natural killer (NK) cells, with a unique NK cell receptor phenotype, are abundantly present in the non-pregnant (endometrium) and pregnant (decidua) humanuterine mucosa. It is hypothesized that NK cells in the endometrium are precursors for decidual NK cells present during pregnancy. Microenvironmental changes can alter the phenotype of NK cells, but it is unclear whether decidual NK cell precursors in the endometrium alter their NK cell receptor repertoire under the influence of pregnancy. To examine whether decidual NK cell precursors reveal phenotypic modifications upon pregnancy, we immunophenotyped the NK cell receptor repertoire of both endometrial and early-pregnancy decidual NK cells using flow cytometry. We showed that NK cells in pre-pregnancy endometrium have a different phenotypic composition compared to NK cells in early-pregnancy decidua. The frequency of killer-immunoglobulin-like receptor (KIR expressing NK cells, especially KIR2DS1, KIR2DL2L3S2, and KIR2DL2S2 was significantly lower in decidua, while the frequency of NK cells expressing activating receptors NKG2D, NKp30, NKp46, and CD244 was significantly higher compared to endometrium. Furthermore, co-expression patterns showed a lower frequency of NK cells co-expressing KIR3DL1S1 and KIR2DL2L3S2 in decidua. Our results provide new insights into the adaptations in NK cell receptor repertoire composition that NK cells in the uterine mucosa undergo upon pregnancy.


Assuntos
Endométrio , Células Matadoras Naturais , Gravidez , Feminino , Humanos , Receptores de Células Matadoras Naturais , Útero , Mucosa
2.
Proc Natl Acad Sci U S A ; 121(15): e2316447121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557174

RESUMO

Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Células Matadoras Naturais , Leucemia , Linfoma , Membrana Celular/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Interferon gama/metabolismo , Receptores de Células Matadoras Naturais , Humanos , Leucemia/metabolismo , Linfoma/metabolismo , Proteínas de Membrana/metabolismo
3.
Adv Sci (Weinh) ; 11(14): e2305998, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298098

RESUMO

Natural killer (NK) cells are central components of the innate immunity system against cancers. Since tumor cells have evolved a series of mechanisms to escape from NK cells, developing methods for increasing the NK cell antitumor activity is of utmost importance. It is previously shown that an ex vivo stimulation of patient-derived NK cells with interleukin (IL)-2 and Hsp70-derived peptide TKD (TKDNNLLGRFELSG, aa450-461) results in a significant upregulation of activating receptors including CD94 and CD69 which triggers exhausted NK cells to target and kill malignant solid tumors expressing membrane Hsp70 (mHsp70). Considering that TKD binding to an activating receptor is the initial step in the cytolytic signaling cascade of NK cells, herein this interaction is studied by molecular docking and molecular dynamics simulation computational modeling. The in silico results showed a crucial role of the heterodimeric receptor CD94/NKG2A and CD94/NKG2C in the TKD interaction with NK cells. Antibody blocking and CRISPR/Cas9-mediated knockout studies verified the key function of CD94 in the TKD stimulation and activation of NK cells which is characterized by an increased cytotoxic capacity against mHsp70 positive tumor cells via enhanced production and release of lytic granules and pro-inflammatory cytokines.


Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/metabolismo , Neoplasias/metabolismo
4.
HLA ; 103(2): e15387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38358031

RESUMO

The immunogenome is the part of the genome that underlies immune mechanisms and evolves under various selective pressures. Two complex regions of the immunogenome, major histocompatibility complex (MHC) and natural killer cell receptor (NKR) genes, play an important role in the response to selective pressures of pathogens. Their importance is expressed by their genetic polymorphism at the molecular level, and their diversity associated with different types of diseases at the population level. Findings of associations between specific combinations of MHC/NKR haplotypes with different diseases in model species suggest that these gene complexes did not evolve independently. No such associations have been described in horses so far. The aim of the study was to detect associations between MHC and NKR gene/microsatellite haplotypes in three horse breed groups (Camargue, African, and Romanian) by statistical methods; chi-square test, Fisher's exact test, Pearson's goodness-of-fit test and logistic regression. Associations were detected for both MHC/NKR genes and microsatellites; the most significant associations were found between the most variable KLRA3 gene and the EQCA-1 or EQCA-2 genes. This finding supports the assumption that the KLRA3 is an important receptor for MHC I and that interactions of these molecules play important roles in the horse immunity and reproduction. Despite some limitations of the study such as low numbers of horses or lack of knowledge of the selected genes functions, the results were consistent across different statistical methods and remained significant even after overconservative Bonferroni corrections. We therefore consider them biologically plausible.


Assuntos
Complexo Principal de Histocompatibilidade , Polimorfismo Genético , Animais , Cavalos/genética , Humanos , Receptores de Células Matadoras Naturais/genética , Alelos , Complexo Principal de Histocompatibilidade/genética , Cruzamento
5.
Mol Cells ; 47(3): 100007, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38238205

RESUMO

Recent evidence establishes a pivotal role for obesity-induced inflammation in precipitating insulin resistance and type-2 diabetes. Central to this process is the proinflammatory M1 adipose-tissue macrophages (ATMs) in epididymal white adipose tissue (eWAT). Notably, natural killer (NK) cells are a crucial regulator of ATMs since their cytokines induce ATM recruitment and M1 polarization. The importance of NK cells is shown by the strong increase in NK-cell numbers in eWAT, and by studies showing that removing and expanding NK cells respectively improve and worsen obesity-induced insulin resistance. It has been suggested that NK cells are activated by unknown ligands on obesity-stressed adipocytes that bind to NKp46 (encoded by Ncr1), which is an activating NK-cell receptor. This was supported by a study showing that NKp46-knockout mice have improved obesity-induced inflammation/insulin resistance. We therefore planned to use the NKp46-knockout mice to further elucidate the molecular mechanism by which NKp46 mediates eWAT NK-cell activation in obesity. We confirmed that obesity increased eWAT NKp46+ NK-cell numbers and NKp46 expression in wild-type mice and that NKp46-knockout ablated these responses. Unexpectedly, however, NKp46-knockout mice demonstrated insulin resistance similar to wild-type mice, as shown by fasting blood glucose/insulin levels and glucose/insulin tolerance tests. Obesity-induced increases in eWAT ATM numbers and proinflammatory gene expression were also similar. Thus, contrary to previously published results, NKp46 does not regulate obesity-induced insulin resistance. It is therefore unclear whether NKp46 participates in the development of obesity-induced inflammation and insulin resistance. This should be considered when elucidating the obesity-mediated molecular mechanisms that activate NK cells.


Assuntos
Resistência à Insulina , Animais , Camundongos , Inflamação/metabolismo , Insulina , Células Matadoras Naturais , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Receptores de Células Matadoras Naturais
6.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(1): 80-88, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38246181

RESUMO

Hepatocellular carcinoma (HCC) is well characterized as a heterogeneous disease. Its late-stage diagnosis and chemotherapy resistance make it one of the refractory tumors in China. Natural killer (NK) cells play a significant role in immune surveillance. However, NK cells become dysfunctional in the progression of HCC, leading to tumor immune escape. This article reviews the recent progress on different strategies of NK cell-based immunotherapy in treating HCC, including direct adoptive NK cell transfer, gene engineering in NK cell, NK cell receptor targeting, immunosuppressive microenvironment modification, and tumor toxicity enhancement by cytokines or traditional Chinese medicine. These NK cell-based strategies have shown promising therapeutic potential.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Imunoterapia , Células Matadoras Naturais , Receptores de Células Matadoras Naturais , Microambiente Tumoral
7.
J Exp Clin Cancer Res ; 43(1): 24, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245792

RESUMO

BACKGROUND: Non-muscle-invasive bladder cancer (NMIBC) is treated with transurethral resection of bladder tumor (TURBT) followed by intravesical instillation of chemotherapy or Bacillus Calmette-Guérin therapy. However, these treatments have a high recurrence rate and side effects, emphasizing the need for alternative instillations. Previously, we revealed that expanded allogeneic human natural killer (NK) cells from peripheral blood are a promising cellular therapy for prostate cancer. However, whether NK cells exhibit a similar killing effect in bladder cancer (BCa) remains unknown. METHODS: Expansion, activation, and cryopreservation of allogeneic human NK cells obtained from peripheral blood were performed as we previously described. In vitro cytotoxicity was evaluated using the cell counting kit-8. The levels of perforin, granzyme B, interferon-γ, tumor necrosis factor-α, and chemokines (C-C-motif ligand [CCL]1, CCL2, CCL20, CCL3L1, and CCL4; C-X-C-motif ligand [CXCL]1, CXCL16, CXCL2, CXCL3, and CXCL8; and X-motif ligand 1 and 2) were determined using enzyme-linked immunosorbent assay. The expression of CD107a, major histocompatibility complex class I (MHC-I), MHC-I polypeptide-related sequences A and B (MICA/B), cytomegalovirus UL16-binding protein-2/5/6 (ULBP-2/5/6), B7-H6, CD56, CD69, CD25, killer cell Ig-like receptors (KIR)2DL1, KIRD3DL1, NKG2D, NKp30, NKp46, and CD16 of NK cells or BCa and normal urothelial cells were detected using flow cytometry. Cytotoxicity was evaluated using lactate dehydrogenase assay in patient-derived organoid models. BCa growth was monitored in vivo using calipers in male NOD-scid IL2rg-/- mice subcutaneously injected with 5637 and NK cells. Differential gene expressions were investigated using RNA sequence analysis. The chemotaxis of T cells was evaluated using transwell migration assays. RESULTS: We revealed that the NK cells possess higher cytotoxicity against BCa lines with more production of cytokines than normal urothelial cells counterparts in vitro, demonstrated by upregulation of degranulation marker CD107a and increased interferon-γ secretion, by MICA/B/NKG2D and B7H6/NKp30-mediated activation. Furthermore, NK cells demonstrated antitumor effects against BCa in patient-derived organoids and BCa xenograft mouse models. NK cells secreted chemokines, including CCL1/2/20, to induce T-cell chemotaxis when encountering BCa cells. CONCLUSIONS: The expanded NK cells exhibit potent cytotoxicity against BCa cells, with few toxic side effects on normal urothelial cells. In addition, NK cells recruit T cells by secreting a panel of chemokines, which supports the translational application of NK cell intravesical instillation after TURBT from bench to bedside for NMIBC treatment.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Masculino , Animais , Camundongos , Citotoxicidade Imunológica , Interferon gama/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ressecção Transuretral de Bexiga , Linhagem Celular Tumoral , Camundongos Endogâmicos NOD , Células Matadoras Naturais/metabolismo , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Quimiocinas
8.
Immunohorizons ; 8(1): 97-105, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38240638

RESUMO

Chimeric Ag receptor (CAR) NK cells are challenging to manufacture and fail to achieve consistent tumor infiltration and sustained cytolytic function in the tumor microenvironment. In vivo engineering of NK cells using mRNA-based CAR delivery may overcome these issues. In this study, we developed an in vivo programming method by designing CARs that leverage the biology of NK cell receptors for cell type-specific expression and function. These CARs were engineered by fusion of a tumor recognition domain with the natural cytotoxic receptor family including NKp30, NKp44, and NKp46. Our results demonstrated that these natural cytotoxic receptor-based CARs can engage endogenous signaling adaptors to effectively activate human NK cells for tumor lysis and cytokine production. Specifically, we discovered that stable expression of an NKp44-based CAR was contingent on the presence of the immune cell-specific signaling adaptor DAP12. This innovative strategy facilitates direct in situ programming of NK cells, enhancing safety and minimizing off-target effects in nontargeted, healthy tissues.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Células Matadoras Naturais , Neoplasias/terapia , Neoplasias/metabolismo , Receptores de Células Matadoras Naturais , Expressão Gênica , Microambiente Tumoral
9.
FEBS J ; 291(7): 1530-1544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38158698

RESUMO

The heterodimeric natural killer cells antigen CD94 (CD94)-NKG2-A/NKG2-B type II integral membrane protein (NKG2A) receptor family expressed on human and mouse natural killer (NK) cells monitors global major histocompatibility complex (MHC) class I cell surface expression levels through binding to MHC class Ia-derived leader sequence peptides presented by HLA class I histocompatibility antigen, alpha chain E (HLA-E; in humans) or H-2 class I histocompatibility antigen, D-37 (Qa-1b; in mice). Although the molecular basis underpinning human CD94-NKG2A recognition of HLA-E is known, the equivalent interaction in the murine setting is not. By determining the high-resolution crystal structure of murine CD94-NKG2A in complex with Qa-1b presenting the Qa-1 determinant modifier peptide (QDM), we resolved the mode of binding. Compared to the human homologue, the murine CD94-NKG2A-Qa-1b-QDM displayed alterations in the distribution of interactions across CD94 and NKG2A subunits that coincide with differences in electrostatic complementarity of the ternary complex and the lack of cross-species reactivity. Nevertheless, we show that Qa-1b could be modified through W65R + N73I mutations to mimic HLA-E, facilitating binding with both human and murine CD94-NKG2A. These data underscore human and murine CD94-NKG2A cross-species heterogeneity and provide a foundation for humanising Qa-1b in immune system models.


Assuntos
60617 , Sinais Direcionadores de Proteínas , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA/genética , Antígenos HLA/metabolismo , Células Matadoras Naturais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/química , Peptídeos/metabolismo , Receptores de Células Matadoras Naturais/metabolismo
10.
Front Immunol ; 14: 1256404, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908353

RESUMO

Introduction: Natural killer (NK) cells are a key component of the innate immune system, involved in defending the host against virus-infected cells and tumor immunosurveillance. Under in vitro culture conditions, IL-12/15/18 can induce a memory-like phenotype in NK cells. These cytokine-induced memory-like (CIML) NK cells possess desirable characteristics for immunotherapies, including a longer lifespan and increased cytotoxicity. Methods: In this study, NK cells were isolated from peripheral blood of healthy donors and stimulated with IL-12/15/18 to induce a memory-like phenotype or with IL-15 alone as a control. After seven days of culture, multiparametric flow cytometry analysis was performed to evaluate the phenotypic and functional profiles of CIML and control NK cells. Results: Our results showed a significantly higher expression of CD25, CD69, NKG2D, NKp30, NKp44, NKp46, TACTILE, and Granzyme B in CIML NK cells compared to control NK cells. In contrast, KIR2D expression was significantly lower in CIML NK cells than in control NK cells. Moreover, functional experiments demonstrated that CIML NK cells displayed enhanced degranulation capacity and increased intracellular IFN-γ production against the target cell line K562. Interestingly, the degranulation capacity of CIML NK cells was positively correlated with the expression of the activating receptors NKp46 and NKp30, as well as with the inhibitory receptor TACTILE. Discussion: In conclusion, this study provides a deep phenotypic characterization of in vitro-expanded CIML NK cells. Moreover, the correlations found between NK cell receptors and degranulation capacity of CIML NK cells allowed the identification of several biomarkers that could be useful in clinical settings.


Assuntos
Citocinas , Células Matadoras Naturais , Citocinas/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Citometria de Fluxo , Interleucina-12/metabolismo
11.
Cells ; 12(22)2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37998322

RESUMO

Natural killer (NK) cells play a vital role in xenotransplantation rejection. One approach to induce NK cell immune tolerance is to prevent the NK cell-mediated direct killing of porcine cells by targeting the interaction of the activating receptor NKG2D and its ligands. However, the identity of porcine ligands for the human NKG2D receptor has remained elusive. Previous studies on porcine UL-16 binding protein 1 (pULBP-1) as a ligand for human NKG2D have yielded contradictory results. The goal of the present study was to clarify the role of pULBP-1 in the immune response and its interaction with human NKG2D receptor. To accomplish this, the CRISPR/Cas9 gene editing tool was employed to disrupt the porcine ULBP-1 gene in a 5-gene knockout porcine endothelial cell line (GGTA1, CMAH, ß4galNT2, SLA-I α chain, and ß-2 microglobulin, 5GKO). A colony with two allele mutations in pULBP-1 was established as a 6-gene knockout pig cell line (6GKO). We found that pULBP-1-deficient pig cells exhibited a reduced binding capacity to human NKG2D-Fc, a recombinant chimera protein. However, the removal of ULBP-1 from porcine endothelial cells did not significantly impact human NK cell degranulation or cytotoxicity upon stimulation with the pig cells. These findings conclusively demonstrate that pULBP-1 is not a crucial ligand for initiating xenogeneic human NK cell activation.


Assuntos
Células Endoteliais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Animais , Suínos , Receptores de Células Matadoras Naturais/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Ligantes , Células Matadoras Naturais
12.
Front Immunol ; 14: 1231916, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675109

RESUMO

Introduction: Natural Killer (NK) cells hold the potential to shift cell therapy from a complex autologous option to a universal off-the-shelf one. Although NK cells have demonstrated efficacy and safety in the treatment of leukemia, the limited efficacy of NK cell-based immunotherapies against solid tumors still represents a major hurdle. In the immunosuppressive tumor microenvironment (TME), inhibitory interactions between cancer and immune cells impair antitumoral immunity. KLRC1 gene encodes the NK cell inhibitory receptor NKG2A, which is a potent NK cell immune checkpoint. NKG2A specifically binds HLA-E, a non-classical HLA class I molecule frequently overexpressed in tumors, leading to the transmission of inhibitory signals that strongly impair NK cell function. Methods: To restore NK cell cytotoxicity against HLA-E+ tumors, we have targeted the NKG2A/HLA-E immune checkpoint by using a CRISPR-mediated KLRC1 gene editing. Results: KLRC1 knockout resulted in a reduction of 81% of NKG2A+ cell frequency in ex vivo expanded human NK cells post-cell sorting. In vitro, the overexpression of HLA-E by tumor cells significantly inhibited wild-type (WT) NK cell cytotoxicity with p-values ranging from 0.0071 to 0.0473 depending on tumor cell lines. In contrast, KLRC1 KO NK cells exhibited significantly higher cytotoxicity when compared to WT NK cells against four different HLA-E+ solid tumor cell lines, with p-values ranging from<0.0001 to 0.0154. Interestingly, a proportion of 43.5% to 60.2% of NKG2A- NK cells within the edited NK cell population was sufficient to reverse at its maximum the HLA-E-mediated inhibition of NK cell cytotoxicity. The expression of the activating receptor NKG2C was increased in KLRC1 KO NK cells and contributed to the improved NK cell cytotoxicity against HLA-E+ tumors. In vivo, the adoptive transfer of human KLRC1 KO NK cells significantly delayed tumor progression and increased survival in a xenogeneic mouse model of HLA-E+ metastatic breast cancer, as compared to WT NK cells (p = 0.0015). Conclusions: Our results demonstrate that KLRC1 knockout is an effective strategy to improve NK cell antitumor activity against HLA-E+ tumors and could be applied in the development of NK cell therapy for solid tumors.


Assuntos
Células Matadoras Naturais , Leucemia , Humanos , Animais , Camundongos , Receptores de Células Matadoras Naturais , Transporte Proteico , Microambiente Tumoral
13.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(9): 852-856, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37732582

RESUMO

CD226 is an activated receptor on the surface of natural killer (NK) cells. It competes with TIGIT and CD96 to bind to ligands such as CD155 on the surface of tumor cells and mediates the killing function of NK cells. Although TIGIT and CD96 have other binding ligands in the tumor microenvironment, they compete to bind CD115 ligands with higher affinity and inhibit the activity of NK cells, which allows tumor cells to evade killing. Therefore, studying the expression patterns of these three NK cell surface receptors in different tumors and monitoring their binding ability with ligands will help us to explore new tumor treatment strategies. This article reviews the role and mechanism of CD226, TIGIT, CD96 and other NK cell receptor molecules in regulating NK cell function in anti-tumor immune response.


Assuntos
Células Matadoras Naturais , Receptores Imunológicos , Ligantes , Receptores de Células Matadoras Naturais , Antígenos CD
14.
Arch Virol ; 168(9): 237, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653112

RESUMO

We have evaluated the association of polymorphisms in the intronic variable-number tandem repeat (VNTR) regions of the human NKG2D, NKG2A, and IL-1RN genes with resistance and/or susceptibility to SARS-CoV-2 infection in a total of 209 patients with SARS-CoV-2 infection (125 asymptomatic patients and 84 symptomatic patients with mild symptoms) and 355 healthy controls, using the PCR-RFLP method. The genotypic and allelic frequency distributions for an IL-1RN (VNTR) single-nucleotide polymorphism (SNP) were found to be comparable among the patient groups. Overall, in SARS-CoV-2 patients, NKG2A (rs2734440) showed a protective association in the codominant [(A/A vs. A/G): (OR = 0.53, 95% CI = 0.34-0.83, p = 0.006)], recessive [(A/A vs. A/G+G/G): (OR = 0.6, 95% CI = 0.39-0.92, p = 0.02)] and over-dominant [(A/A+G/G vs. A/G): (OR = 0.57, 95% CI = 0.38-0.84, p = 0.005)] models. Similarly, NKG2D (rs7980470) showed a protective association in the codominant [(A/A vs. A/G): (OR = 0.46, 95% CI = 0.3-0.7, p = 0.0003), codominant (A/A vs. G/G): (OR = 0.54, 95% CI = 0.31-0.71, p = 0.027)], recessive [(A/A vs. A/G+G/G): (OR = 0.47, 95% CI = 0.32-0.7, p = 0.0001) and over-dominant [(A/A+G/G vs. A/G): (OR = 0.56, 95% CI = 0.38-0.82, p = 0.003)] models. At the allelic level, there was a higher frequency of the "G" allele of NKG2D (rs7980470) in healthy controls than in patients with SARS-CoV-2 infection, suggesting that individuals with the "G" allele in the intronic region of NKG2D are likely to be protected against SARS-CoV-2 infection. Overall, our data suggest that polymorphisms in the host NKG2D and NKG2A genes have a protective role in SARS-CoV-2 infection, although the functional impact of these polymorphisms on control of SARS-CoV-2 infection remains unknown.


Assuntos
COVID-19 , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , COVID-19/epidemiologia , COVID-19/genética , SARS-CoV-2/genética , Polimorfismo de Nucleotídeo Único , Receptores de Células Matadoras Naturais
15.
Front Immunol ; 14: 1191884, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520575

RESUMO

Natural killer (NK) cells play an important role in the early defense against tumors and virally infected cells. Their function is thought to be controlled by the balance between activating and inhibitory receptors, which often compete for the same ligands. Several activating receptors expressed on virtually all NK cells lack an inhibitory partner, most notably CD16, NCR1 and NKG2D. We therefore hypothesized that a signal through at least one of these receptors is always required for full NK cell activation. We generated animals lacking all three receptors (TKO) and analyzed their NK cells. In vitro, TKO NK cells did not show reduced ability to kill tumor targets but displayed hyperresponsiveness to NK1.1 stimulation. In vivo, TKO animals had a minor reduction in their ability to control non-hematopoietic tumors and cytomegalovirus infection, which was the result of reduced NK cell activity. Together, our findings show that activating NK cell receptors without an inhibitory partner do not provide a 'master' signal but are integrated in the cumulative balance of activating and inhibitory signals. Their activity is controlled through regulation of the responsiveness and expression of other activating receptors. Our findings may be important for future development of NK cell-based cancer immunotherapy.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias , Animais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Células Matadoras Naturais/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Neoplasias/metabolismo
16.
Mod Pathol ; 36(8): 100255, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37385341

RESUMO

Natural killer (NK) cells develop a complex inhibitory and/or activating NK-cell receptor system, including killer cell immunoglobulin-like receptors (KIRs or CD158) and CD94/NKG2 dimers, which are variably combined to generate the individual's NK-cell receptor repertoire. Establishing NK-cell receptor restriction by flow cytometric immunophenotyping is an important step in diagnosing NK-cell neoplasms, but reference interval (RI) data for interpreting these studies are lacking. Specimens from 145 donors and 63 patients with NK-cell neoplasms were used to identify discriminatory rules based on 95% and 99% nonparametric RIs for CD158a+, CD158b+, CD158e+, KIR-negative, and NKG2A+ NK-cell populations to establish NK-cell receptor restriction. These 99% upper RI limits (NKG2a >88% or CD158a >53% or CD158b >72% or CD158e >54% or KIR-negative >72%) provided optimal discrimination between NK-cell neoplasm cases and healthy donor controls with an accuracy of 100% compared with the clinicopathologic diagnosis. The selected rules were applied to 62 consecutive samples received in our flow cytometry laboratory that were reflexed to an NK-cell panel due to an expanded NK-cell percentage (exceeding 40% of total lymphocytes). Twenty-two (35%) of 62 samples were found to harbor a very small NK-cell population with restricted NK-cell receptor expression based on the rule combination, suggestive of NK-cell clonality. A thorough clinicopathologic evaluation for the 62 patients did not reveal diagnostic features of NK-cell neoplasms; therefore, these potential clonal populations of NK cells were designated as NK-cell clones of uncertain significance (NK-CUS). In this study, we established decision rules for NK-cell receptor restriction from the largest published cohorts of healthy donors and NK-cell neoplasms. The presence of small NK-cell populations with restricted NK-cell receptors does not appear to be an uncommon finding, and its significance requires further exploration.


Assuntos
Células Matadoras Naturais , Receptores KIR , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Citometria de Fluxo , Células Matadoras Naturais/metabolismo , Receptores KIR/metabolismo , Células Clonais
17.
Nat Immunol ; 24(7): 1087-1097, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37264229

RESUMO

Human leukocyte antigen (HLA)-E binds epitopes derived from HLA-A, HLA-B, HLA-C and HLA-G signal peptides (SPs) and serves as a ligand for CD94/NKG2A and CD94/NKG2C receptors expressed on natural killer and T cell subsets. We show that among 16 common classical HLA class I SP variants, only 6 can be efficiently processed to generate epitopes that enable CD94/NKG2 engagement, which we term 'functional SPs'. The single functional HLA-B SP, known as HLA-B/-21M, induced high HLA-E expression, but conferred the lowest receptor recognition. Consequently, HLA-B/-21M SP competes with other SPs for providing epitope to HLA-E and reduces overall recognition of target cells by CD94/NKG2A, calling for reassessment of previous disease models involving HLA-B/-21M. Genetic population data indicate a positive correlation between frequencies of functional SPs in humans and corresponding cytomegalovirus mimics, suggesting a means for viral escape from host responses. The systematic, quantitative approach described herein will facilitate development of prediction algorithms for accurately measuring the impact of CD94/NKG2-HLA-E interactions in disease resistance/susceptibility.


Assuntos
Células Matadoras Naturais , Sinais Direcionadores de Proteínas , Humanos , Antígenos de Histocompatibilidade Classe I , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo , Subfamília D de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília D de Receptores Semelhantes a Lectina de Células NK/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Células Matadoras Naturais/metabolismo
18.
FEBS J ; 290(20): 4864-4876, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37254618

RESUMO

Alternative therapeutic options targeting urologic malignancies, such as germ cell tumours, as well as urothelial, renal and prostate carcinomas, are still urgently needed. The membrane protein CD24 represents a promising immunotherapeutical approach. The present study aimed to decipher the molecular function of CD24 in vitro and evaluate the cytotoxic capacity of a third-generation natural killer (NK) cell chimeric antigen receptor (CAR) against CD24 in urologic tumour cell lines. Up to 20 urologic tumour cell lines and several non-malignant control cells were included. XTT viability assays and annexin V/propidium iodide flow cytometry analyses were performed to measure cell viability and apoptosis rates, respectively. Co-immunoprecipitation followed by mass spectrometry analyses identified direct interaction partners of CD24. Luciferase reporter assays were used to functionally validate transactivation of CD24 expression by SOX2. N- and O-glycosylation of CD24 were evaluated by enzymatic digestion and mass spectrometry. The study demonstrates that SOX2 transactivates CD24 expression in embryonal carcinoma cells. In cells of different urological origins, CD24 interacted with proteins involved in cell adhesion, ATP binding, phosphoprotein binding and post-translational modifications, such as histone acetylation and ubiquitination. Treatment of urological tumour cells with NK-CD24-CAR cells resulted in a decreased cell viability and apoptosis induction specifically in CD24+ tumour cells. Limitations of the study include the in vitro setting, which still has to be confirmed in vivo. In conclusion, we show that CD24 is a promising novel target for immune therapeutic approaches targeting urologic malignancies.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias Urogenitais , Humanos , Masculino , Antígeno CD24/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Células Matadoras Naturais , Próstata , Receptores de Células Matadoras Naturais/metabolismo , Testículo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias Urológicas/metabolismo , Neoplasias Urogenitais/imunologia , Neoplasias Urogenitais/terapia
19.
J Chem Inf Model ; 63(11): 3486-3499, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37207294

RESUMO

Natural killer (NK) cells play an important role in the innate immune response against tumors and various pathogens such as viruses and bacteria. Their function is controlled by a wide array of activating and inhibitory receptors, which are expressed on their cell surface. Among them is a dimeric NKG2A/CD94 inhibitory transmembrane (TM) receptor which specifically binds to the non-classical MHC I molecule HLA-E, which is often overexpressed on the surface of senescent and tumor cells. Using the Alphafold 2 artificial intelligence system, we constructed the missing segments of the NKG2A/CD94 receptor and generated its complete 3D structure comprising extracellular (EC), TM, and intracellular regions, which served as a starting point for the multi-microsecond all-atom molecular dynamics simulations of the receptor with and without the bound HLA-E ligand and its nonameric peptide. The simulated models revealed that an intricate interplay of events is taking place between the EC and TM regions ultimately affecting the intracellular immunoreceptor tyrosine-based inhibition motif (ITIM) regions that host the point at which the signal is transmitted further down the inhibitory signaling cascade. Signal transduction through the lipid bilayer was also coupled with the changes in the relative orientation of the NKG2A/CD94 TM helices in response to linker reorganization, mediated by fine-tuned interactions in the EC region of the receptor, taking place after HLA-E binding. This research provides atomistic details of the cells' protection mechanism against NK cells and broadens the knowledge regarding the TM signaling of ITIM-bearing receptors.


Assuntos
Subfamília C de Receptores Semelhantes a Lectina de Células NK , Receptores Imunológicos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Ligantes , Inteligência Artificial , Antígenos de Histocompatibilidade Classe I/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo
20.
Stem Cell Res Ther ; 14(1): 77, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37038186

RESUMO

BACKGROUND: Dozens of transplants generated from pluripotent stem cells are currently in clinical trials. The creation of patient-specific iPSCs makes personalized therapy possible due to their main advantage of immunotolerance. However, some reports have claimed recently that aberrant gene expression followed by proteome alterations and neoantigen formation can result in iPSCs recognition by autologous T-cells. Meanwhile, the possibility of NK-cell activation has not been previously considered. This study focused on the comparison of autologous and allogeneic immune response to iPSC-derived cells and isogeneic parental somatic cells used for reprogramming. METHODS: We established an isogeneic cell model consisting of parental dermal fibroblasts, fibroblast-like iPSC-derivatives (iPS-fibro) and iPS-fibro lacking beta-2-microglobulin (B2M). Using the cells obtained from two patients, we analyzed the activation of autologous and allogeneic T-lymphocytes and NK-cells co-cultured with target cells. RESULTS: Here we report that cells differentiated from iPSCs can be recognized by NK-cells rather than by autologous T-cells. We observed that iPS-fibro elicited a high level of NK-cell degranulation and cytotoxicity, while isogeneic parental skin fibroblasts used to obtain iPSCs barely triggered an NK-cell response. iPSC-derivatives with B2M knockout did not cause an additional increase in NK-cell activation, although they were devoid of HLA-I, the major inhibitory molecules for NK-cells. Transcriptome analysis revealed a significant imbalance of ligands for activating and inhibitory NK-cell receptors in iPS-fibro. Compared to parental fibroblasts, iPSC-derivatives had a reduced expression of HLA-I simultaneously with an increased gene expression of major activating ligands, such as MICA, NECTIN2, and PVR. The lack of inhibitory signals might be due to insufficient maturity of cells differentiated from iPSCs. In addition, we showed that pretreatment of iPS-fibro with proinflammatory cytokine IFNγ restored the ligand imbalance, thereby reducing the degranulation and cytotoxicity of NK-cells. CONCLUSION: In summary, we showed that iPSC-derived cells can be sensitive to the cytotoxic potential of autologous NK-cells regardless of HLA-I status. Thus, the balance of ligands for NK-cell receptors should be considered prior to iPSC-based cell therapies. Trial registration Not applicable.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Ligantes , Células Matadoras Naturais , Tolerância Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...